

Rio Tinto Metal Powders

Powder Metallurgy Products

At Rio Tinto Metal Powders (RTMP, formerly QMP) we manufacture powder from iron that is entirely sourced from low residual ore. Because of this, our powders are exceptionally clean and consistent.

As a part of Rio Tinto, RTMP has production facilities in Sorel-Tracy, Quebec, Canada; and Suzhou, China. We produce iron, pre-alloyed, and diffusion and organic bonded grade powders. Our metal powders are helping customers in a variety of industries, including new applications for the energy transition market.

We have a full range of ferrous powder grades for virtually all powder metallurgy applications. Our high-quality powders can help you produce high-performance components. As your committed, long-term partner, RTMP offers you decades of technical expertise and knowledge as well as the significant resources and infrastructure of Rio Tinto, an international mining and metallurgical company.

Rio Tinto is one of the world's leading metals and mining companies with a global workforce of **more than 50,000** and an extensive portfolio of operating assets spanning across Australia, Asia, North and South America, Europe, and Africa.

We mine ore to produce iron, aluminium, copper, molybdenum, gold, silver, tellurium, selenium, scandium, and industrial diamonds and minerals. Many of our materials are essential for the low-carbon transition, and for advancing human progress.

As a part of Rio Tinto, Rio Tinto Iron and Titanium (RTIT) has production facilities in Sorel-Tracy, Canada; Richard's Bay, South Africa; and Madagascar. Rio Tinto Metal Powders (RTMP) has an additional facility in Suzhou, China.

Sustainability

At Rio Tinto, sustainability is more than a catch phrase. Aligning our business strategy and daily practices around sustainability enables us to strengthen our operations and products, build enduring communities, and provide lasting benefit to customers, employees, and stakeholders.

Companywide, we have committed to achieving net zero emissions by 2050 and target a **15% reduction** of scope 1 and 2 emissions by 2025, with a 50% reduction by 2030*.

Our RTIT operations in Quebec are run entirely on renewable hydropower, and we are actively pursuing additional sustainability initiatives. We developed ilmenite smelting in Sorel-Tracy, Quebec in the 1950s and through a joint agreement with the Canadian Government, we are investing \$537 million (C\$737 million) into reducing emissions at our RTIT operations by up to 70%. Early in 2023, RTIT started our BlueSmeltingTM demonstration plant in Sorel-Tracy. The BlueSmeltingTM project involves an ilmenite reduction technology that could produce 95% less greenhouse gas emissions (GHG) than the current process. This innovative technology was developed by scientists at Rio Tinto's Critical Minerals and Technology Centre in Sorel-Tracy. The demo plant can process up to 40,000 tonnes of ilmenite per year, making it the largest in the world based on this type of technology. This would enable us to produce titanium dioxide, steel, and metal powders with significantly lower carbon footprints. Furthermore, our iron products, including metal powders, are generated from the residual iron of our smelting process to produce titanium dioxide, without the need for any additional mining.

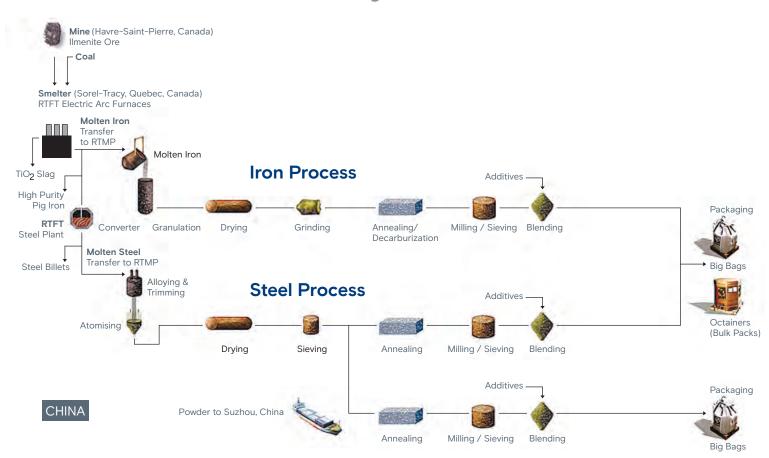
The GHG reduction initiative at RTMP operations involves modernising control systems for more efficient gas consumption in annealing furnaces and converting three annealing furnaces from natural gas to electric.

Safety

Safety is our number one priority at Rio Tinto. Our goal is for everyone to go home safe at the end of each day. We have global safety standards which address key areas of risks, and they provide consistency in safety management and performance across our global operations and projects. Our businesses are audited internally against these standards and are expected to meet safety performance requirements and targets.

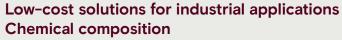
Our commitment to safety has enabled us to achieve a safety performance which is higher than the industry average for all injury frequency rates.

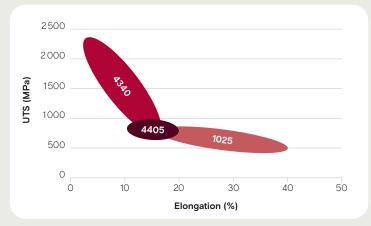
info.qmp@riotinto.com • www.qmp-powders.com

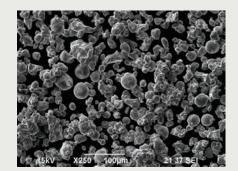

References

* Visit https://www.riotinto.com/en/sustainability/climate-change to learn more about Rio Tinto's sustainability commitments.

Rio Tinto Metal Powders


Process summary


Additive Manufacturing


Metal additive manufacturing is going through a significant growth in capabilities with an increasing interest in industrial markets. Our mission is to help industries adopt this disruptive technology, even where cost is a key driver. Our low-cost ferrous water atomized powders are the real solution for industrial adoption of additive manufacturing.

	Grade	С	Mn	Мо	Cr	Ni	Si
AT	OMET 1025	0,20-0,35	0,70-0,90	-	-	-	0,10-0,25
ATO	OMET 4340	0,38-0,43	0,60-0,80	0,20-0,30	0,70-0,90	1,60-2,00	0,10-0,25
ATO	OMET 4405	0,55-0,60	0,15-0,20	0,80-0,90	-	-	-

Range of mechanical properties based on the applied heat treatment

Additive Manufacturing

Examples of mechanical properties measured on LPBF samples

	АТОМЕ	T 1025	ATOME	T 4340	ATOMET 4405
Mechanical Properties	As-Built*	Annealed at 700 °C	As-Built**	Quench & Temper (200°C)	As-Built*
Relative Density (%)	> 99,2	> 99,2	> 99.2	> 99,2	> 99,5
Ultimate Tensile Strength (MPa)	780 ± 11	530 ± 10	990 ± 8	1520 ± 8	1350 ± 26
Yield Strength (MPa)	755 ± 11	480 ± 7	900 ± 10	1220 ± 13	1240 ± 24
Elongation (%)	18 ± 1	35 ± 3	15 ± 3	9 ± 2	5 ± 1
Hardness (HRC)	30 ± 3	10 ± 2	43 ± 3	53 ± 1	50 ± 2

- Any supplementary or different post processing can result in different values.
 Results of other heat treatment are also available upon request.
- Parameters developed to obtain these results could be provided with the powders.
- * Printed 0° direction to z axis
- ** Printed 45° direction to z axis

We have you covered for different technologies!

Technology	PSD (µm)
Laser Powder Bed Fusion	18-53
Powder Bed Binder Jetting	18-53
Direct Energy Deposition	53-150
Cold Spray Additive Manufacturing	18-53
E-Beam Additive Manufacturing	53-150

Synergy[®] Series

Standard compaction

High performance powder mixes for enhanced productivity suitable for your most demanding powder metallurgy applications

Basic physical powder mixes properties

Lubricant	Apparent density	Hall flow rate	Compressibility MPa	Green strength
Synergy® (0,60%)	3,14	33	382	11
EBS wax (0,80%)	3,03	37	374	9

Synergy® powder mixes are the newest introduction to the Rio Tinto Metal Powders family of press-ready mixes.

Expand the possibilities of your process with exceptional lubrication performance even at reduced lubricant loading level. Achieve clean sintered parts without residues from delubrication thanks to a fully organic composition, free of zinc or other metals.

Compared to conventional PM lubricants, Synergy® Series mixes have improved apparent density and more stable flow properties. Enjoy the benefits of a well controlled and more stable manufacturing process such as reduced scrap rates and tighter dimensional tolerances.

Compared to regular remixes with EBS wax

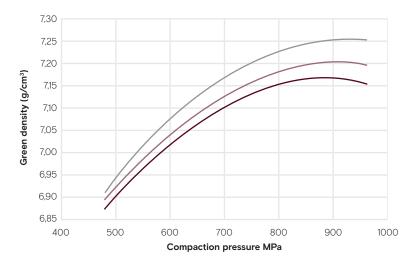
Fully organic Zinc-free

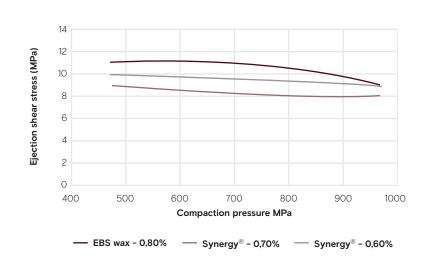
Higher stroke rate provides increased productivity

Indicative results based on standard formulations. Individual results may differ based on specific process differences.

Synergy[®] Series

With excellent lubrication properties, Synergy® powder mixes can help achieve unparalleled process performance. The lubricant loading level can be reduced while preserving the ejection performance. This improves compressibility, flow behaviour and the mix apparent density.


Superior surface finishes can be achieved at even low lubricant loads which reduces die wear and can reduce the need for secondary operations. In addition, Synergy® powder mixes lead to perfectly clean parts post sintering.


In comparison to regular PM lubricants, Synergy® allows for the compaction of taller parts due to a higher apparent density.

Basic physical powder mixes properties

Lubricant	Synergy (0,60%)	EBS wax (0,80%)
Apparent density (g/cm³)	3,14	3,03
Hall flow rate (s/50g)	33	37
Compressibility (MPa)	382	374
Green strength (MPa)	11	9

Mix composition: ATOMET 1001HP + 1,80% Cu + 0,70% C + lubricant

Iron Grades

	ATOMET 24	ATOMET 25	ATOMET 28/29	ATOMET 1001	ATOMET 1001HP
	For low and medium density PM applications. Very high green strength for more complex parts.	For low to medium density PM applications (6,2-6,5 g/cm³) requiring high green strength.	For medium density PM applications (6.4-6.8 g/cm³). Low growth characteristics and high green strength.	For highest density PM applications (6.8-7.2 g/cm³). High strength, high compressibility water atomized steel powder.	For soft magnetic PM applications which require an ultra pure steel powder. May be blended with ferro phosphorus for enhanced properties.
Apparent density, g/cm³	2,46	2,53	2,80/2,90	2,95	2,92
Flow, s/50g	30	29	27	26	25
Chemistry, wt%					
Fe	99+	99+	99+	99+	99+
Mn	0,008	0,008	0,008	0,20	0,05
Ni	-	-	-	-	-
Мо	-	-	-	-	-
Cr	-	-	-	-	-
C	0,01	0,03	0,05/0,03	0,004	0,004
0	0,15	0,18	0,14/0,20	0,08	0,05
S	0,006	0,006	0,006	0,009	0,009
Cu	-	-	-	-	-
Particle Size Distribution, wt%					
+250 μm	Trace	Trace	Trace	Trace	Trace
250/150 μm	4	3	5	10	14
150/45 μm	71	67	73	65	66
-45 μm	25	30	22	25	20
Green Properties					
Density, g/cm³ at 600 MPa	6,90	6,95	7,00	7,10	7,15
Green Strength, MPa	25	25	25	19	20
Sintered Properties, g/cm³	2% Cu, 0,8% C	2% Cu, 0,8% C	2% Cu, 0,8% C	2% Cu, 0,8% C	0,4-0,55%C
Sintered Density, g/cm ³	6,70	6,70	6,70	7,00	7,00
Transverse Rupture Strength, MPa	940	900	900	1240	700
Hardness, HRB	79	80	82	92	50
Tensile Strength, MPa	530	500	430	590	280
Dimensional Change, % from die size	+0,22	+0,20	+0,27	+0.37	+0,20
Heat treated Properties *				2% Cu, 0,7% C	
Sintered Density, g/cm³				7,1	
Transverse Rupture Strength, MPa				1710	
Hardness, HRC				42	
Tensile Strength, MPa				1110	

All mixes contain 0,5% wax. Sintered in a 90% nitrogen based atmosphere at 1120°C for 25 minutes.

^{*} Heat treatment: Austenitized for 15 minutes at 845°C. Oil quenched and tempered 60 minutes at 185°C.

Iron Grades - Consumables

1 / / (
	ATOMET 57	ATOMET 56	ATOMET 68	ATOMET 86	ATOMET 1001 ASN/ ATOMET 1001HP ASN	ATOMET 195SP
	Coarse iron powder for alloying, chemical applications, cementation, and environmental remediation (PRBs, soil mixing, etc).	Coarse iron powder for alloying, chemical applications, cementation, and environmental remediation (PRBs, soil mixing, etc).	High purity coarse iron powder for welding, alloying, and other applications.	High purity iron powder for oxygen lance cutting, environmental remediation (Injection), and other applications.	Iron powder for various battery, energy storage, and other application .	High purity fine Iron powder (sub 45µm) for seed cleaning, pharmaceutical, magnetic additive, chemical, and other applications.
Apparent density, g/cm³	-	3,70	3,27	2,90	3,10/3,21	3,07
Chemistry, wt%						
Fe	-	bal.	bal.	bal.	bal.	bal.
Mn	-	-	-	-	0,18/0,04	-
Ni	-	-	-	-	-	-
Мо	-	-	-	-	-	-
Cr	-	-	-	-	-	-
С	3,17	3,30	0,05	0,05	0,11/0,08	0,01
0	2,64	2,57	0,25	0,18	0,40	0,08
S	0,008	0,010	0,008	0,008	0,010/0,004	0,007
Cu	-	-	-	-	-	-
Particle Size Distribution, wt%						
+600 μm	21	0,10	Trace			
600/150 μm	55	72	57			
-150 μm	24	27,9	43			
+250 μm				Trace	Trace	Trace
250/150 μm				6	11/15	Trace
150/45 μm				71	59	2
-45 µm				23	30/26	98

Prealloyed Grades

1 / / /				
	ATOMET 4001	ATOMET 4201	ATOMET 4401	ATOMET 4601
	For high performance, high strength powder metallurgy and powder forging applications. High compressibility Mo-prealloy powder.	For improved as-sintered toughness and hardenability. High compressibility Ni-Mo prealloy powder.	For high density PM applications requiring extra strength and surface hardening for wear resistance. High compressibility Mo-prealloy powder.	For exceptional as-sinterec toughness and hardenabili High compressibility Ni-M prealloy powder.
Apparent density, g/cm³	2,94	2,93	2,93	2,91
Flow, s/50g	25	26	25	25
Chemistry, wt%				
Fe	bal.	bal.	bal.	bal.
Mn	0,14	0,29	0,16	0,20
Ni	-	0,46	-	1,80
Мо	0,53	0,60	0,85	0,55
Cr	-	-	-	-
С	0,004	0,004	0,003	0,004
0	0,10	0,10	0,08	0,10
S	0,008	0,009	0,008	0,01
Cu	-	-	-	-
Particle Size Distribution, wt%				
+250 μm	Trace	Trace	Trace	Trace
250/150 μm	12	13	13	11
150/45 μm	66	66	66	66
-45 μm	22	21	21	23
Green Properties				
Density, g/cm³ at 600 MPa	7,10	7,05	7,10	6,95
Green Strength, MPa	19	1,8	18	15,5
Sintered Properties, g/cm³	0,5%C	0,5%C	0,5%C	0,5%C
Sintered Density, g/cm³	7,00	7,00	7,00	7,00
Transverse Rupture Strength, MPa	825	840	980	1030
Hardness, HRB	72	76	79	77
Tensile Strength, MPa	385	440	490	490
Dimensional Change, % from die size	+0,19	+0,04	+0,15	+0,08
Heat treated Properties *	0,4-0,55%C	0,4-0,55%C	0,4-0,55%C	0,4-0,55%C
Sinter Hardened Properties **				1,0%Cu, 0,6
Sintered Density, g/cm³	7,10	7,05	7,10	6,95 6,95
Transverse Rupture Strength, MPa	1500	1806	1805	1570 1480
Hardness, HRC	39	37	32	41 33
Tensile Strength, MPa	866	397	905	1105 850
Dimensional Change, % from die size				+0,38

All mixes contain 0,5% wax. Sintered in a 90% nitrogen based atmosphere at 1120°C for 25 minutes.

^{*} Heat treatment: Austenitized for 15 minutes at 845°C. Oil quenched and tempered 60 minutes at 185°C.

^{**} Sinter hardening: Cooling rate of 1,5°C/s from 650 to 400°C, tempered 60 minutes at 200°C.

Prealloyed Grades

1 / / /			
	ATOMET 4701	ATOMET 4801	ATOMET 4901
	Sinter hardening powder for high strength parts without oil quenching, induction hardening or other post-sintering heat treatments.	Sinter hardening powder for high strength applications requiring wear resistance. Optional tempering increases strength even further.	For the production of parts requiring high wear resistance and superior dynamic properties.
Apparent density, g/cm³	2,96	2,91	2,99
Flow, s/50g	26	25	24
Chemistry, wt%			
Fe	bal.	bal.	bal.
Mn	0,45	0,20	0,15
Ni	0,90	4,00	-
Мо	1,00	0,50	1,50
Cr	0,45	-	-
C	0,01	0,01	0,01
0	0,21	0,10	0,10
S	0,008	0,009	0,007
Cu	-	-	-
Particle Size Distribution, wt%			
+250 μm	Trace	Trace	Trace
250/150 μm	14	10	12
150/45 μm	66	66	66
-45 μm	20	24	22
Green Properties			
Density, g/cm³ at 600 MPa	6,90	6,85	7,05
Green Strength, MPa	16	11,5	1,3
Sintered Properties, g/cm ³	0,5%C	0,5%C	0,5%C
Sintered Density, g/cm ³	7,00	7,00	7,00
Transverse Rupture Strength, MPa	1230	1220	1120
Hardness, HRB	91	98	86
Tensile Strength, MPa	620	610	570
Dimensional Change, % from die size	+0,03	-0,05	+0,11
Heat treated Properties *			0,4-0,55%C
Sinter Hardened Properties **	1,0%Cu, 0,6%C	1,0%Cu, 0,6%C	1,0%Cu, 0,6%C
Sintered Density, g/cm³	6,90	6,85	7,05 7,05
Transverse Rupture Strength, MPa	1620	1570	1405 1500
Hardness, HRC	35	33	44 27
Tensile Strength, MPa	875	850	995 725
B		0.10	

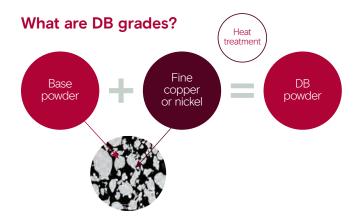
All mixes contain 0,5% wax. Sintered in a 90% nitrogen based atmosphere at 1120°C for 25 minutes.

Dimensional Change, % from die size +0,30

^{*} Heat treatment: Austenitized for 15 minutes at 845°C. Oil quenched and tempered 60 minutes at 185°C.

^{**} Sinter hardening: Cooling rate of 1,5°C/s from 650 to 400°C, tempered 60 minutes at 200°C.

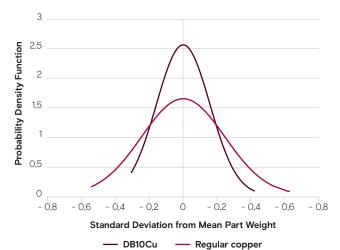
Diffusion and Organic Bonded Grades


	ATOMET DB46	ATOMET DB48	ATOMET DB49	FLOMET F49-Cu	FLOMET F49-Ni
	Excellent consistency and dimensional control for high performance powder metallurgy applications.	For demanding applications requiring excellent consistency and dimensional control in parts.	For demanding applications requiring very high strength and dimensional control in parts.	For demanding applications requiring direct hardening and very high strength parts.	For demanding applications requiring excellent fatigue properties and dimensional control in parts.
Apparent density, g/cm³	3,01	3,01	3,04	2,96	3,04
Flow, s/50g	24	24	24	30	31
Chemistry, wt%					
Fe	bal.	bal.	bal.	bal.	bal.
Mn	0,15	0,15	0,15	0,15	0,15
Ni	1,75	4,00	4,00	-	2,00
Мо	0,50	0,50	1,50	1,50	1,50
Cr					
С	0,005	0,006	0,02	0,01	0,01
0	0,09	0,09	0,09	0,1	0,1
S	0,008	0,008	0,008	0,007	0,007
Cu	1,50	1,50	2,00	2,00	-
Particle Size Distribution, wt%					
+250 μm	Trace	Trace	Trace	Trace	Trace
250/150 μm	12	12	12	12	12
150/45 μm	65	65	62	66	66
-45 μm	23	23	26	22	22
Green Properties					
Density, g/cm³ at 600 MPa	7,10	7,10	7,05	7,04	7,09
Green Strength, MPa	17	19	15	11	11
Sintered Properties, g/cm ³	0,5% C	0,5% C	0,5% C	0,7% C	0,6% C
Sintered Density, g/cm ³	7,00	7,00	7,00	7,00	7,00
Transverse Rupture Strength, MPa	1440	1590		1400	1325
Hardness	89 HRB	21 HRC	30 HRC	97 HRB	93 HRB
Tensile Strength, MPa	605	750		850	715
Dimensional Change, % from die size	+0,23	+0,04		+0,11	-0,11
Heat treated Properties *	0,4- 0,55%C	0,4- 0,55%C	0,4- 0,55%C		
Sintered Density, g/cm ³	7,10	7,10	7,05		
Transverse Rupture Strength, MPa	1400	1935	1680		
Hardness, HRC	39	38	42		
Tensile Strength, MPa	950	1150	985		

Dimensional change, % from die size

All mixes contain 0,5% wax. Sintered in a 90% nitrogen based atmosphere at 1120°C for 25 minutes.

 * Heat treatment: Austenitized for 15 minutes at 845°C. Oil quenched and tempered 60 minutes at 185°C.

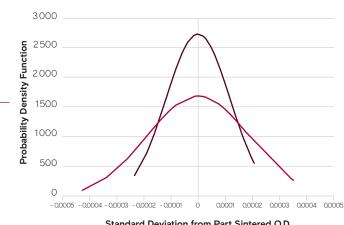

Diffusion bonded (DB) grades for improved part-to-part stability

Two families of grades

		Base	Nickel	Copper
	DB46	AT. 4001 (0,5% Mo)	1,75%	1,5%
Diffusion bonded base grades	DB48	AT. 4001 (0,5% Mo)	4%	1,5%
3	DB49	AT. 4901 (1,5% Mo)	4%	2%
Copper rich diffusion bonded grade (to be added in premixes)	DB10Cu	AT. 1001 (0% Mo)	0%	10%

Weight normal distribution

Why DB grades?


- Improved dimensional stability
- Reduced segregation of fine constituents and improved homogeneity
- More controlled and stable production process
- Reduced scrap rate

Example of improved performance

DB10Cu	1001	20% DB10Cu	0,6% graphite	0,7% lube
Reg. Cu	1001	2% Reg. Cu	0,6% graphite	0,7% lube

- Production of 2500 parts of each mix
- Evaluation of weight and dimensional stability

Sintered O.D. normal distribution

Standard Deviation from Part Sintered O.D.

— DB10Cu - Regular copper

© Rio Tinto 2023. All Rights Reserved.

SMC applications

Soft Magnetic Composites (SMC) represent a class of powder metallurgy products that are responsible for a transformation in the field of electric motors. SMC, which are Fe-based powders that have been coated with an electrically insulating coating, are now a material option available to motor designers.

Laminated steels and permanent magnets both have unique properties that are highly desirable. However, SMC with their low cost and high degree of flexibility for the fabrication of complex shaped parts, allow for the design of highly efficient motors with high torque density.

In some instances, replacing a laminated component with one made by SMC, formed into a more complex shape, can result in a significant decrease in the quantity of Cu wire used to have the motor turning. This change alone would directly translate into important weight and cost savings for the end user.

Non-moving components, such as cores, can also benefit from the unique properties conferred by SMC.

SMC properties

The mechanical and magnetic properties of a SMC can be adjusted by first selecting the proper material, by compacting it to the desired density, and then by performing the adequate thermal treatment. On that last point, SMC can be subdivided into two general families of materials; those which are heat treated and those which are steam treated; the later resulting in significantly higher strength but slightly higher losses.

Rio Tinto offers several SMC products in each of these categories. Technical representatives are available across the world to help you select the SMC material that is best suited for your application.

Heat treated SMC - low losses

			Typical Properties														
SMC	Density		TRS	Electrical	B [T]			н	To	otal Fe losse	s @ 1T [W/kg	al .	Total Fe losses @ 1,5T [W/kg]				
Product	[g/cm³]	Treatment	[MPa]	Resistivity [μΩ·m]	10 kA/m	12 kA/m	µmax	H _c [A/m]	50/60Hz	400Hz	1000Hz	2000Hz	60Hz	400Hz	1000Hz	2000Hz	
	7,30 689MPa-60°C	515°C	45	1360	1,44	1,49	324	257	5,6 / 6,8	50	131	269	13	101	257	525	
EM-300	7,41 827MPa-80°C	N ₂ -30min	29	1350	1,50	1,56	355	232	5,2 / 6,3	46	120	249	12	94	241	496	
EM-301	7,15 510MPa-60°C	530°C Air-N ₂ -30min	40	90	1,35	1,40	297	261	6,0 / 7,2	54	150	327	12	105	286	674	
EM-301	7,43 758MPa-60°C	515°C N ₂ -30min	20	2100	1,49	1,54	309	232	5,2 / 6,3	46	122	250	12	95	245	515	
E14.400	7,37 758MPa-60°C	515°C	24	940	1,44	1,51	310	262	5,8 / 6,9	50	132	271	13	103	262	532	
EM-106	7,43 827MPa-80°C	N₂-30min 530°C 531°C 515°C N₂-30min	40	120	1,50	1,56	335	258	5,6 / 6,8	51	140	312	13	105	282	617	
FM 504	7,15 503MPa-60°C	480°C Air-N ₂ -30min	49	500	1,39	1,44	367	292	6,7 / 8,0	57	151	317	14	115	307	570	
EM-501	7,30 696MPa-60°C	500°C N ₂ -60min	26	90	1,53	1,56	380	234	5,1 / 6,2	48	140	330	13	99	311	576	

Heat treated SMC - low losses at very high frequencies and low applied field

								Ту	pical I	Proper	ties						
SMC Product					В	т1						Total Fe los	ses [W/kg]				
	Density	Treatment	TRS	Electrical Resistivity		.11	µ max	H _c		@ 0,	05 T			@ 0,1 T			
	[g/cm³]		[MPa]	[μΩ·m] [*]	10 kA/m	12 kA/m	F	[A/m]	5kHz	10kHz	20kHz	30kHz	5kHz	10kHz	20kHz	30kHz	
EM-301	7,30 689MPa-60°C	515°C N ₂ -30min	21	3850	1,48	1,53	465	257	4,5	10	26	47	15	38	91	164	

Steam treated SMC - high strength - low losses

								Typic	al Pro	perties	;				
SMC Product			TRS	Electrical	В	ιτı			Total Fe losses [W/kg]						
	Density [g/cm³]	Treatment	[MPa]	Resistivity [μΩ·m]	10 kA/m	12 kA/m	µ max	H [A/m]	50/60Hz	400Hz	1000Hz	2000Hz	60Hz	400Hz	1000Hz
EM-306	7,40 758MPa-60°C	Steam	143	250	1,55	1,61	540	276	5,9 / 7,0	50	144	320	14	113	286

Steam treated SMC - high strength - high permeability

							Ту	pical l	Propert	ies				
SMC Product	Density	_		B [T]				H.	Total Fe losses (W/		ses [W/kg]	@ 1,5 T		
	Density [g/cm³]	Treatment	TRS [MPa]	Resistivity [μΩ·m]	10 kA/m	12 kA/m	μ max	[A/m]	50/60Hz	400Hz	1000Hz	60Hz	400Hz	1000Hz
EM-703	7,30 689MPa-60°C	Steam	165	1360	1,57	1,63	901	272	7,5 / 9,8	156	759	20	334	1192

N.B.: Data shown reflects actual results obtained either by Rio Tinto or by independent external laboratories. Fluctuations of the order of +/- 5% are expected depending on the thermal/steam treatment parameters used.

Rio Tinto Metal Powders Worldwide Locations

RTIT Quebec Operations Sorel-Tracy, Canada

1655, route Marie-Victorin Sorel-Tracy (Québec) J3R 4R4 Canada Tel +1 450 746 5050

Chicago, USA

200 E Randolph Street Suite 7100 Chicago, IL 60601 USA Tel +1 773 270 6500

Eschborn, Germany

Alfred-Herrhausen-Allee 3-5, 65760 Eschborn Germany Tel +49 6196 96 000

Pune, India

Gat No. 246 ,Barge Wasti, Chimbali Road, Chimbali Tal : Khed, Dist : Pune 410501 India Tel +91 9561091531

Suzhou, China

418 Nanshi Street Suzhou Industrial Park Suzhou 215021 P.R. China Tel +86 512 6283 6100

